Engine Testing & Pump Development

Company:

Compiled By: Justin Palmer

Title: Global Applications Manager

Date: 21-March-2016

Document No.:

	TEST REPO	P/N			
TYPE				PAGE	2 OF 8
DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

1) OBJECTIVE

The purpose of this testing was to determine the maximum performance output of the Fyr Pak pump when built with higher horsepower engines and to determine what next steps are required to improve the performance output. The Fyr Pak currently underperforms in the market relative to the and . There has been customer demand both domestically and overseas for a competitive product to sell against the aforementioned units. Revision A of this report captures the most recent test results and recommended next steps.

2) PROCEDURE

The testing was performed by Andy Anderson of and Justin

Palmer of The testing was performed on the Fyr Pak or 20FP-C8P configuration

of the 20FP pump assembly and was performed on 16-Mar-2016 through 17-Mar-2016. A total of

(12) performance tests were run on (4) different pump/engine combinations to determine the

maximum performance output of the pump in its current configuration as well as its output when

coupled to higher horsepower prototype engines.

The table below shows the (12) configurations that were tested:

- The "B" engine is a digital-ignition equipped engine comprised of standard components previously used for testing in October 2015.
- The "1" engine is a slightly "hot-rodded" version of the baseline engine that is representative of what the standard 8 HP engine could become in the future. This engine was built with larger reed valves to allow the engine to ingest more air during operation. The cooling fins on the cylinder walls/head are also larger to allow the engine to run cooler during operation.
- The "2" engine was the first of two engines built with an increased stroke crankshaft, larger reed valves and larger cylinder wall/head cooling fins. This engine used a standard Fyr Pak carburetor.
- The "3" engine was the second of two engines built with an increased stroke crankshaft, larger reed valves and larger cylinder wall/head cooling fins. This engine used a special Tillotson carburetor with a velocity stack inlet to improve air flow.

The table below also describes the air cleaner and muffler, the high speed (HS) carburetor setting, the pump impeller and the ignition module used for each test. Each test was performed using a calibrated discharge gauge and a calibrated, cart-mounted Rosemount flow meter.

		REVISIONS			
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD
	Α	PRELIMINARY	JRP	21MAR2016	

	TEST REPO	TEST REPORT				
TYPE				PAGE	3 OF 8	
DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α	

Test #	Engine #	Engine Description	Air Filter	Muffler	HS Carb. Setting	Impeller	Ignition Module/RPM Control
1	В	Baseline (Production)			1-3/4	Production 4.88" Dia.	Digital / ~8300
2	В	Baseline (Production)			1-1/2	Production 4.88" Dia.	Digital / ~8300
3	В	Baseline (Production)			1-1/2	Production 4.88" Dia.	Digital / ~8300
4	В	Baseline (Production)			1-3/4	Production 4.88" Dia.	Digital / ~8300
5	1	Updated 820			1-1/2	Production 4.88" Dia.	Digital / ~8300
6	1	Updated 820			1-1/2	Production 4.88" Dia.	Digital / ~8300
7	2	Super 960 V1			1-1/2	Production 4.88" Dia.	Digital / ~8300
8	3	Super 960 V2			1-1/2	Production 4.88" Dia.	Digital / ~8300
9	3	Super 960 V2			1-1/2	Production 4.88" Dia.	Analog / No Speed Control
10	3	Super 960 V2			1-1/2	Modified 4.75" Dia.	Analog / No Speed Control
11	3	Super 960 V2			1-1/2	Production HP100	Analog / No Speed Control
12	3	Super 960 V2			1-1/2	Production 4.88" Dia	Analog / No Speed Control

Engine "3" was originally built with a digital speed control as shown in test #8 but this was removed due to the pump bouncing off the rev limiter and the engine module retarding the ignition timing. The analog ignition module allowed for higher revs to be achieved and since testing was being performed with the higher revs were allowed. Per the engine can comfortably rev to 9,000-10,000 RPM providing the fuel mixture is appropriate and the overspeed control can be reprogrammed for Hale as needed.

		REVISIONS			
ECN	REV	CHANGED FROM	ВУ	DATE	APVD
	А	PRELIMINARY	JRP	21MAR2016	

1		TEST REPO	P/N			
	TYPE				PAGE	4 OF 8
	DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

3) RESULTS

The results of the individual tests are shown below.

	Te	est #1		Test #2				
Flow	Pressure	Engine Speed	CHT	Flow	Pressure	Engine Speed	СНТ	
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F	
0	190	7120	-	0	210	7410	-	
10	175	6950	-	10	190	7130	-	
20	160	6650	-	20	175	6890	-	
30	145	6350	-	30	160	6600	-	
40	125	6100	-	40	140	6310	-	
50	105	5830	-	50	115	6010	-	
60	75	5580	-	60	90	5650	-	
70	50	5340	-	71	80	5460	-	

	To	est #3			Te	st #4	
Flow	Pressure	Engine Speed	CHT	Flow	Pressure	Engine Speed	CHT
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F
0	230	7830	-	0	220	7750	-
10	220	7610	-	10	205	7420	-
20	195	7280	-	20	185	7100	-
30	170	6920	-	30	170	6820	-
40	150	6540	-	40	155	6440	-
50	125	6240	-	50	125	6170	-
60	100	5970	-	60	95	5830	-
75	60	5600	-	74	40	5490	-

	Te	est #5		Test #6				
Flow	Pressure	Engine Speed	CHT	Flow	Pressure	Engine Speed	СНТ	
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F	
0	245	8110	353	0	230	7800	327	
10	230	7710	357	10	210	7600	332	
20	205	7440	363	20	195	7310	336	
30	190	7130	363	30	180	7030	340	
40	165	6820	341	40	155	6680	341	
50	145	6450	363	50	135	6300	342	
60	110	6100	333	60	100	6010	339	
77	40	5730	344	77	40	5700	325	

		REVISIONS			
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD
	Α	PRELIMINARY	JRP	21MAR2016	

	TEST REPO	P/N			
TYPE				PAGE	5 OF 8
DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

	Te	est #7			Test #8				
Flow	Pressure	Engine Speed	CHT	Flow	Pressure	Engine Speed	СНТ		
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F		
0	255	8360	345	0	255	8350	334		
10	220	7760	340	10	250	8350	339		
20	200	7440	336	20	240	8150	347		
30	190	7320	351	30	225	7860	349		
40	175	7170	359	40	200	7530	339		
50	155	6960	363	50	170	7120	342		
60	135	6640	363	60	140	6800	344		
70	105	6400	363	70	105	6480	349		
84	40	6180	344	85	50	6300	350		

	Te	est #9		Test #10							
Flow	Pressure	Engine Speed	СНТ	Flow	Pressure	Engine Speed	CHT				
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F				
0	275	8600	371	0	268	8720	359				
10	260	8400	350	10	250	8480	357				
20	235	8110	345	20	228	8100	346				
30	220	7800	350	30	200	7770	354				
40	195	7430	350	40	180	7400	364				
50	175	7160	355	50	160	7200	363				
60	140	6840	345	60	140	6930	359				
70	115	6600	340	70	110	6700	348				
85	50	6340	323	84	50	6460	325				

	Te	st #11		Test #12						
Flow	Pressure	Engine Speed	CHT	Flow	Pressure	Engine Speed	CHT			
US GPM	PSI	RPM	°F	US GPM	PSI	RPM	°F			
0	250	8500	374	0	280	8550	363			
10	240	8130	372	10	270	8480	364			
20	225	7870	370	20	240	8150	366			
30	205	7530	361	30	220	7780	367			
40	180	7100	345	40	200	7500	359			
50	160	6730	337	50	160	6980	359			
60	125	6430	333	60	130	6610	355			
70	100	6280	324	70	110	6410	353			
83	55	6110	302	82	50	6150	343			

	REVISIONS								
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD				
	Α	PRELIMINARY	JRP	21MAR2016					

1		TEST REPO	RT		P/N	
	TYPE	ТҮРЕ				6 OF 8
	DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

Comparing tests #1 & #2 to tests #3 & #4 proves the standard air cleaner used on the Fyr Pak is incredibly restrictive and reduces maximum engine speed by approximately 400-500 RPM. This translates to a maximum output pressure loss of approximately 20-40 PSI at shutoff based on the current engine and pump configuration. It is also important to note that there is approximately 20 PSI to be gained by simply changing the high speed (HS) carburetor setting from 1-3/4 turns out to only 1-1/2 turns out. The current factory motors are set to 1-3/4 to improve fuel economy but per 1-1/2 is acceptable and does not risk damage to the engine.

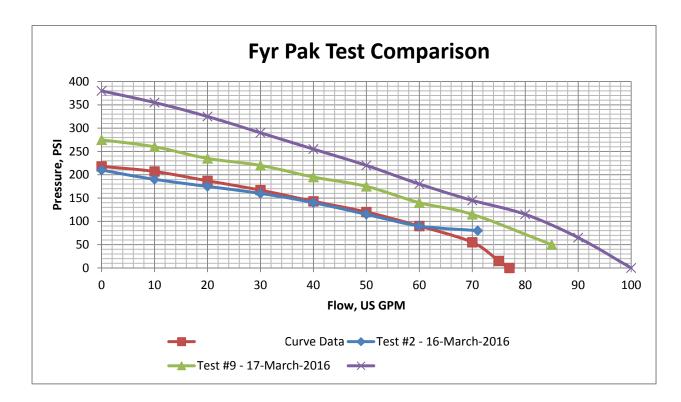
Tests #5 & #6 are also of importance as they highlight the potential performance increase to be had from a slightly modified 8 HP engine when used with a high performance air cleaner. This engine could potentially replace the standard 8 HP unit currently used in the base model Fyr Pak (and Dinglee DP-F8) to create a more competitive in the marketplace against the

Test #7 was performed on a moderate stroker engine with a stock Fyr Pak carburetor to highlight the performance improvements of the larger displacement engine before moving on to the main event, which is the engine used for tests #8 through #12.

Test #8 was initially performed with a factory installed digital ignition module utilizing the current RPM speed setting of 8300 RPM. However, the pump wanted to spin faster than 8300 RPM due to the extra power of the engine so this module had to be changed out to an analog module without a speed limiter. Test #9 shows just how much flow and pressure is available from the current Fyr Pak hydraulic set when used with a high performance engine, air cleaner and carburetor and a stock Fyr Pak muffler.

Test #10 was performed to see if additional pressure was available by using a smaller diameter impeller. The results show engine speed increased but pressure actually decreased.

Test #11 was performed to see if maximum flow could be increased beyond 85 GPM. This test utilized an HP100 impeller (016-0980-00-0) that was modified to fit on the engine. The results show flow actually decreased slightly and pressure and engine speed were significantly lower than in test #9.


Test #12 was performed to see if any additional performance was available by using a muffler. This muffler is essentially a Fyr Flote muffler on a Fyr Pak exhaust pipe. Although a slight improvement in pressure was seen at lower flows, this pressure increase diminished as flow was increased.

	REVISIONS								
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD				
	Α	PRELIMINARY	JRP	21MAR2016					

	TEST REPORT				
TYPE					7 OF 8
DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

Below is a graph comparing the following:

- 20FP-C8P released curve data
- Test #2 data from 16-March-2016
- Test #9 data from 17-March-2016
- and data from published curves

This graph highlights the enormous performance improvement achieved by simply changing to a higher horsepower engine but also highlights how much further we need to go to be competitive against the and

	REVISIONS								
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD				
	Α	PRELIMINARY	JRP	21MAR2016					

	TEST REPO	RT		P/N	
TYPE				PAGE	8 OF 8
DEPARTMENT	PORTABLES	ВҮ	Justin Palmer	REV	Α

4) **CONCLUSIONS**

- a) The standard Fyr Pak hydraulic set is a robust performer when coupled with a high performance air cleaner on a stock engine and an even better performer when mated to a higher horsepower engine.
- b) The standard Fyr Pak air cleaner underperforms significantly compared to a high performance paper/wire mesh air filter.
- c) With the current volute machining, the standard impeller at 4.88" diameter is ideal as it allows for maximum pressure and engine speed while maintaining high flows.
- d) Minor volute changes can be made within the current product envelope to increase performance to levels closer to the and

5) **RECOMMENDATIONS**

- a) Additional endurance testing/tweaking on the Super 960 V2 engine (engine #3) needs to be completed by

 This work has already been committed to but without a definitive timeline.
- b) Additional testing needs to be performed on the high performance air cleaner. It has already been proven that it improves pump performance but a concern is its ability to protect the engine in wet environments. This can possibly be remedied with the use of a protective shroud attached to the engine. Additional benefits of this air cleaner are improved carburetor mounting (air cleaner won't rattle off during operation) as well as paper/wire mesh, over-molded rubber and stainless steel construction (won't rust like the current air cleaner).
- c) Calculations need to be run to determine the optimum size throat inlet and outlet for use with the higher horsepower engine to be more competitive against the and products. Multiple test volutes need to be machined and tested to confirm analytical findings. Impeller diameters may also need to be modified depending on the results from the volute changes.

	REVISIONS								
ECN	REV	CHANGED FROM	ВҮ	DATE	APVD				
	Α	PRELIMINARY	JRP	21MAR2016					